Stable Diffusion 1.5

Generate high-quality images from textual descriptions by leveraging
advanced deep learning techniques.

Model Properties

Uses a Text Encoder to turn prompts into embeddings, an Image
Decoder for latent representation, and the UNet Model in 20 steps. Supports batch
processing (positive and negative prompts).

License name: CreativeML Open RAIL-M License
Select device..

Technical details

Number Of Parameters: 1B
Models Size: 4[GB]
Numerical Scheme: a8_w8, channel-wise, symmetric
Inference Api: CPP

Performance Metrics

Number Of Iterations 20
First Load Time In Sec 5.22282
Fps 0.0625
Sub-Model Performance Metrics
Text Encoder
Output Tokens 77
Number Of Parameters 85.1M
Operations 13.9 GOPs per input token
FPS 16
Image Decoder
Output Resolution [512, 512, 3]
Number Of Parameters 49.5M
Operations 2500 GOPs per input token
FPS 0.45
UNet Model
Output Resolution [64, 64, 4]
Number Of Parameters 904.2M
Operations 840.5 GOPs per input token
FPS 1.9

Explore Related Models

GenAI Models
Qwen2-VL-2B-Instruct
Generate multimodal responses by interpreting both text and images, enabling vision-language understanding and content creation
GenAI Models
Qwen2.5-Coder-1.5B
Generate text responses to prompts, enabling natural language understanding, multilingual support, and code generation