Classification
ImageNet
Network Name | Accuracy (top1) | Quantized | Input Resolution (HxWxC) | Params (M) | OPS (G) | Pretrained | Source | Compiled |
---|---|---|---|---|---|---|---|---|
efficientnet_l | 80.46 | 79.36 | 300x300x3 | 10.55 | 19.4 | download | link | download |
efficientnet_lite0 | 74.99 | 73.81 | 224x224x3 | 4.63 | 0.78 | download | link | download |
efficientnet_lite1 | 76.68 | 76.21 | 240x240x3 | 5.39 | 1.22 | download | link | download |
efficientnet_lite2 | 77.45 | 76.74 | 260x260x3 | 6.06 | 1.74 | download | link | download |
efficientnet_lite3 | 79.29 | 78.33 | 280x280x3 | 8.16 | 2.8 | download | link | download |
efficientnet_lite4 | 80.79 | 80.47 | 300x300x3 | 12.95 | 5.10 | download | link | download |
efficientnet_m 🚀 | 78.91 | 78.63 | 240x240x3 | 6.87 | 7.32 | download | link | download |
efficientnet_s | 77.64 | 77.32 | 224x224x3 | 5.41 | 4.72 | download | link | download |
hardnet39ds | 73.43 | 72.92 | 224x224x3 | 3.48 | 0.86 | download | link | download |
hardnet68 | 75.47 | 75.04 | 224x224x3 | 17.56 | 8.5 | download | link | download |
inception_v1 | 69.74 | 69.54 | 224x224x3 | 6.62 | 3 | download | link | download |
mobilenet_v1 | 70.97 | 70.15 | 224x224x3 | 4.22 | 1.14 | download | link | download |
mobilenet_v2_1.0 🚀 | 71.78 | 71.08 | 224x224x3 | 3.49 | 0.62 | download | link | download |
mobilenet_v2_1.4 | 74.18 | 73.07 | 224x224x3 | 6.09 | 1.18 | download | link | download |
mobilenet_v3 | 72.21 | 71.73 | 224x224x3 | 4.07 | 2 | download | link | download |
mobilenet_v3_large_minimalistic | 72.11 | 70.92 | 224x224x3 | 3.91 | 0.42 | download | link | download |
regnetx_1.6gf | 77.05 | 76.75 | 224x224x3 | 9.17 | 3.22 | download | link | download |
regnetx_800mf | 75.16 | 74.84 | 224x224x3 | 7.24 | 1.6 | download | link | download |
regnety_200mf | 70.38 | 70.02 | 224x224x3 | 3.15 | 0.4 | download | link | download |
repvgg_a1 | 74.4 | 73.61 | 224x224x3 | 12.79 | 4.7 | download | link | download |
repvgg_a2 | 76.52 | 75.08 | 224x224x3 | 25.5 | 10.2 | download | link | download |
resmlp12_relu | 75.26 | 74.32 | 224x224x3 | 15.77 | 6.04 | download | link | download |
resnet_v1_18 | 71.26 | 71.06 | 224x224x3 | 11.68 | 3.64 | download | link | download |
resnet_v1_34 | 72.7 | 72.14 | 224x224x3 | 21.79 | 7.34 | download | link | download |
resnet_v1_50 🚀 ⭐ | 75.12 | 74.47 | 224x224x3 | 25.53 | 6.98 | download | link | download |
resnet_v2_18 | 69.57 | 69.1 | 224x224x3 | 11.68 | 3.64 | download | link | download |
resnet_v2_34 | 73.07 | 72.72 | 224x224x3 | 21.79 | 7.34 | download | link | download |
resnext26_32x4d | 76.18 | 75.78 | 224x224x3 | 15.37 | 4.96 | download | link | download |
resnext50_32x4d | 79.31 | 78.39 | 224x224x3 | 24.99 | 8.48 | download | link | download |
shufflenet_g8_w1 | 66.3 | 65.5 | 224x224x3 | 2.46 | 0.36 | download | link | download |
squeezenet_v1.1 | 59.85 | 59.4 | 224x224x3 | 1.24 | 0.78 | download | link | download |
vit_base | 79.98 | 78.88 | 224x224x3 | 86.5 | 34.2 | download | link | download |
vit_small | 78.12 | 77.02 | 224x224x3 | 21.12 | 8.5 | download | link | download |
vit_tiny | 68.02 | 66.08 | 224x224x3 | 5.41 | 4.72 | download | link | download |
- Network available in Hailo Benchmark are marked with 🚀
- Networks available in TAPPAS are marked with ⭐